5

- 20. The NMR gyro of claim 19, wherein the feedthroughs provide both an electrical and a mechanical connection to an external device.
- 21. The NMR gyro of claim 20, wherein the feedthroughs are disposed in a substantially circular pattern.
 - 22. An NMR gyro comprising:
 - a substantially cylindrical enclosure formed from HyMu 80 alloy;
 - a ceramic support having four legs extending outward from a substantially circular central portion, the 10 ceramic support affixed within the enclosure;
 - an NMR cell suspending in vacuum and affixed to the ceramic support;
 - four substantially cylindrical permanent magnets disposed approximately equidistant from the cell, the 15 permanent magnets being disposed at the vertices of a square having the cell at its center;
 - a single-turn magnetic field coil disposed to produce a modulated magnetic field transverse to a magnetic field produced by the permanent magnets;
 - a cell heater that maintains cell temperature at about 100 degrees C.; and
 - at least one pump VCSEL affixed to the ceramic support.
- 23. The NMR gyro of claim 22, wherein the pump VCSEL forms at least a part of an integrated circuit that 25 includes a detector.
- **24**. The NMR gyro of claim **23**, wherein the NMR cell includes a mirrored region disposed oppositely from the VCSEL.
- **25**. The NMR gyro of claim **22**, wherein light from the ³⁰ VCSEL is circularly polarized by a quarter-wave plate interposed between the VCSEL and the NMR cell.
- **26.** The NMR gyro of claim **22**, further comprising a second VCSEL disposed orthogonally with respect to the pump VCSEL.

6

- 27. The NMR gyro of claim 26, wherein light output from the VCSELs is tuned to an absorption wavelength of alkali metal within the NMR cell.
- **28**. The NMR gyro of claim **27**, wherein the VCSELs are tuned by adjusting VCSEL temperature.
 - **29**. The NMR gyro of claim **27**, wherein the VCSELs are tuned by adjusting supply current provided to the VCSELs.
 - 30. The NMR gyro of claim 29, further comprising a circuit board including control circuitry for the VCSELs.
 - 31. The NMR gyro of claim 30, further comprising a plurality of feedthroughs disposed about an exterior surface of the enclosure, the feedthroughs providing electrical connection paths from the enclosure exterior to the circuit board.
 - **32**. The NMR gyro of claim **31**, wherein the feedthroughs provide both an electrical and a mechanical connection to an external device.
- 33. The NMR gyro of claim 26, wherein the NMR gyro 20 is fabricated in a batch process with a wafer structure comprising:
 - a centrally disposed micro NMR cell wafer disposed between top and bottom lid wafers;
 - a detector wafer adjacent the NMR cell wafer;
 - an electronics wafer including detection and signal processing electronics adjacent the detector wafer;
 - a polarizer wafer adjacent the NMR cell wafer on a side opposite the detector wafer;
 - an optics wafer adjacent the polarizer wafer;
 - a laser wafer including readout and pump VCSELs adjacent the optics wafer; and
 - a source control electronics wafer adjacent the laser wafer.

* * * * *